

A Survey on Data Mining Algorithms and
Future Perspective

 N.K. Sharma Dr. R.C. Jain Manoj Yadav
Assistant Professor Director Software Consultant

 Ujjain Engineering College S.A.T.I. Engineering College P.I.S.T.
Ujjain, M.P., India Vidisha, M.P., India Bhopal, M.P., India

Abstract -Data mining is a powerful and new method of
analyzing data and finding out new patterns from large set of
data. The objective of data mining is to pull out knowledge
from a data set in an understandable format. Data mining is
the process of collecting, extracting and analyzing large data
set from different perspectives.
There is an enormous amount of data stored in databases and
data warehouse due to enormous technological advancements
in computing and Internet. It is therefore, required, to develop
powerful tools for analysis of such huge data and mining
valuable information out of it. One of the main challenges in
database mining is developing fast and efficient algorithms
that can handle large volumes of data as most of the mining
algorithms perform computation over the entire databases,
often very large. Data mining is a convenient way of
extracting patterns, which represents knowledge implicitly
stored in large data sets and focuses on issues relating to their
feasibility, usefulness, effectiveness and scalability. It can be
viewed as an essential step in the process of knowledge
discovery. Data are normally preprocessed through data
cleaning, data integration, data selection, and data
transformation and prepared for the mining task. Data
mining can be performed on various types of databases and
information repositories, but the kind of patterns to be found
are specified by various data mining functionalities like class
description, association, correlation analysis, classification,
prediction, cluster analysis etc. This paper gives an overview
of the existing data mining algorithms required for the same.

Keywords: Data mining, KDD, Clustering, Association Rule,
Classification, Sequential and parallel Algorithms

1. INTRODUCTION
The literature available for data mining contains many
definitions [1][2][5][9]. Some of them depend on the
application and how data has been organized into a
database whereas some of them depend on the discovery of
new information from the facts in a database. Data mining
is a process by which one can extract interesting and
valuable information from large data using efficient
techniques. Data Clustering, Data Classification, Detection
of Outliers and Association Rule Mining are useful basic
data mining techniques depending upon the type of
information sought from databases. Basic data mining
techniques are data clustering, data classification, detection
of outliers (or deviations) and association rule discovery
[1][3].
1.1 Data Clustering: It is the process of grouping or

partitioning a set of data into different groups or
clusters based on the principle that the similarity
between the data points in one cluster is maximized
and the similarity between data points in different
clusters is minimized. For example, grouping of

companies with similar stock behavior or similar
growth to identify genes and proteins have similar
functions.

1.2 Data Classification: It is the process to classify a set of
data based on their values. For example, A car dealer
has to classify its customers according to their
preference for cars so that catalogs of new models can
be mailed directly to the customers to maximize
business opportunity.

1.3 Detection of outliers (or Deviations): Finds data points
that differ significantly from the majority of the data
points in a given data set as needed in Medical
diagnosis and credit card detection.

1.4 Association Rule Discovery: It finds all rules that
correlate the presence of one set of items with that of
another set of items. For example, one may find, from
a large set of transaction data, such an association rule
as if a customer buys (one brand of) milk, he/ she
usually buys (another brand of) bread in the same
transaction.

The objective of this paper is to provide various data
mining algorithms with reference to clustering,
classification and association rules. In following section a
survey of clustering algorithms is illustrated. Section 3,
consist various association algorithms. In section 4,
existing classification algorithms have been discussed. In
section 5 various algorithms we expound have been
collated, while in section 6 we discussed development of
new algorithms to overcome the various existing issues.

2. CLUSTERING ALGORITHMS
Clustering algorithms can be categorized based on their
cluster model. As there are probably a few dozen published
clustering algorithms. Not all provide models for their
clusters and can thus not easily be categorized [12][13][14].
2.1 Connectivity based clustering (Hierarchical
clustering)
Connectivity based clustering, also known as hierarchical
clustering, is based on the core idea of objects being more
related to nearby objects than to objects farther away. As
such, these algorithms connect "objects" to form "clusters"
based on their distance. A cluster can be described largely
by the maximum distance needed to connect parts of the
cluster. At different distances, different clusters will form,
which can be represented using a dendrogram, which
explains where the common name "hierarchical clustering"
comes from. These algorithms do not provide a single
partitioning of the data set, but instead provide an extensive
hierarchy of clusters that merge with each other at certain
distances. In a dendrogram, the y-axis marks the distance at

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5149

which the clusters merge, while the objects are placed
along the x-axis such that the clusters don't mix.
Apart from the usual choice of distance functions, the user
also needs to decide on the linkage criterion (since a cluster
consists of multiple object, there are multiple candidates to
compute the distance to) to use. Popular choices are known
as single-linkage clustering (the minimum of object
distances), complete linkage clustering (the maximum of
object distances) or UPGMA ("Unweighted Pair Group
Method with Arithmetic Mean", also known as average
linkage clustering). Furthermore, hierarchical clustering
can be computed agglomerative (starting with single
elements and aggregating them into clusters) or divisive
(starting with the complete data set and dividing it into
partitions).
While these methods are fairly easy to understand, the
results are not always easy to use, as they will not produce
a unique partitioning of the data set, but a hierarchy the
user still needs to choose appropriate clusters from. The
methods are not very robust towards outliers, which will
either show up as additional clusters or even cause other
clusters to merge (known as "chaining phenomenon", in
particular with single-linkage clustering). In the data
mining community these methods are recognized as a
theoretical foundation of cluster analysis, but often
considered obsolete. They did however provide inspiration
for many later methods such as density based clustering.
2.2 Centroid-based Clustering
In centroid-based clustering, clusters are represented by a
central vector, which must not necessarily be a member of
the data set. When the number of clusters is fixed to k, k-
means clustering gives a formal definition as an
optimization problem: find the k cluster centers and assign
the objects to the nearest cluster center, such that the
squared distances from the cluster are minimized.
The optimization problem itself is known to be NP-hard,
and thus the common approach is to search only for
approximate solutions. A particularly well known
approximate method is often actually referred to as "k-
means algorithms". It does however only find a local
optimum, and is commonly run multiple times with
different random initializations. Variations of k-means
often include such optimizations as choosing the best of
multiple runs, but also restricting the centroids to members
of the data set (k-medoids), choosing medians (k-medians
clustering), choosing the initial centers less randomly (K-
means++) or allowing a fuzzy cluster assignment (Fuzzy c-
means). Most k-means-type algorithms require the number
of clusters - k - to be specified in advance, which is
considered to be one of the biggest drawbacks of these
algorithms. Furthermore, the algorithms prefer clusters of
approximately similar size, as they will always assign an
object to the nearest centroid. K-means has a number of
interesting theoretical properties. On one hand, it partitions
the data space into a structure known as Voronoi diagram.
On the other hand, it is conceptually close to nearest
neighbor classification and as such popular in machine
learning. Third, it can be seen as a variation of model based
classification, and Lloyd's algorithm as a variation of the
Expectation-maximization algorithm.

2.3 K-Means Clustering Algorithm
This nonhierarchical method initially takes the number of
components of the population equal to the final required
number of clusters. In this step itself the final required
number of clusters is chosen such that the points are
mutually farthest apart. Next, it examines each component
in the population and assigns it to one of the clusters
depending on the minimum distance. The centroid's
position is recalculated every time a component is added to
the cluster and this continues until all the components are
grouped into the final required number of clusters.

The k-means algorithm works as follows:
a) Randomly select k data object from dataset D as initial

cluster centers.
b) Repeat

 i. Calculate the distance between each data object
di(1≤i≤n) and all k cluster centers

 cj(1≤j≤n) and assign data object di to the nearest
cluster.

 ii. For each cluster j(1≤j≤k), recalculate the cluster
center.

 iii. Until no changing in the center of clusters. The most
widely used convergence criteria for the k-means
algorithm is minimizing the SSE.

2.4 Distribution-based Clustering
The clustering model most closely related to statistics is
based on distribution models. Clusters can then easily be
defined as objects belonging most likely to the same
distribution. A nice property of this approach is that this
closely resembles the way artificial data sets are generated:
by sampling random objects from a distribution. While the
theoretical foundation of these methods is excellent, they
suffer from one key problem known as overfitting, unless
constraints are put on the model complexity. A more
complex model will usually always be able to explain the
data better, which makes choosing the appropriate model
complexity inherently difficult. The most prominent
method is known as expectation-maximization algorithm.
Here, the data set is usually modeled with a fixed (to avoid
overfitting) number of Gaussian distributions that are
initialized randomly and whose parameters are iteratively
optimized to fit better to the data set. This will converge to
a local optimum, so multiple runs may produce different
results.
Distribution-based clustering is a semantically strong
method, as it not only provides you with clusters, but also
produces complex models for the clusters that can also
capture correlation and dependence of attributes. However,
using these algorithms puts an extra burden on the user: to
choose appropriate data models to optimize, and for many
real data sets, there may be no mathematical model
available the algorithm is able to optimize (e.g. assuming
Gaussian distributions is a rather strong assumption on the
data).
2.5 Density-based Clustering
In density-based clustering, clusters are defined as areas of
higher density than the remainder of the data set. Objects in
these sparse areas - that are required to separate clusters -
are usually considered to be noise and border points.The
most popular density based clustering method is DBSCAN.

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5150

In contrast to many newer methods, it features a well-
defined cluster model called "density-reach ability". Similar
to linkage based clustering; it is based on connecting points
within certain distance thresholds. However, it only
connects points that satisfy a density criterion, in the
original variant defined as a minimum number of other
objects within this radius. A cluster consists of all density-
connected objects (which can form a cluster of an arbitrary
shape, in contrast to many other methods) plus all objects
that are within these objects range. Another interesting
property of DBSCAN is that its complexity is fairly low - it
requires a linear number of range queries on the database -
and that it will discover essentially the same results (it is
deterministic for core and noise points, but not for border
points) in each run, therefore there is no need to run it
multiple times.
The key drawback of DBSCAN is that it expects some kind
of density drop to detect cluster borders.
2.6 Graph-based approaches
To address the problem of clustering, k nearest neighbors
(kNNs) are used to identify k most similar points around
each point and by way of conditional merging, clusters are
generated. There are various variants of kNN clustering and
they differ at the conditional merging part of the solution.
For a given point p, its kNNs are found out. If the distance
between p and any of the points in kNN(p) set (say q) is
less than ϵ, then point q is merged into the cluster of p. This
algorithm requires tuning of ϵ and k values to get clusters. In a
method proposed, to construct strongly connected
components from a given directed graph where each edge is
associated with a weight (usually distance between points).
This method is highly sensitive to the presence of noise and
cannot handle clusters of different densities.

3. ASSOCIATION RULE MINING ALGORITHMS
 Given a set of transactions, where each literal (called
items), association rules is an expression of the form X Y,
where X and Y are set of items[1,3,6,8].
There are two important measures for association rules,
support (s) and confidence (), can be defined as follows:
Support is the ratio (in percent) of the records that contain
X  Y to the total number of records in the database.
Confidence is the ratio (in percent) of the number of
records that contain X  Y to the number of records that
contain X.
For example, let us consider customer's purchase data
shown in Table 1.

Table 1: Consumer purchased Data
Trans ID (TID) Item
1 egg, bread, milk
2 egg, milk
3 egg
4 egg, bread, milk
5 cheese
For example, if you were a owner of the supermarket, you
would like to think of the layout of the store. In that case,
the rules in Table 2 can be useful.

Table 2: Association Rules
Rule Support Confidence
egg, bread => milk 40% 100%
egg => bread 40% 50%

The problem of mining association rules can be
decomposed into two sub problems:
1. Find all sets of items(itemset (IS)) whose support is
greater than the user-specified minimum support(MS):large
item set or frequent Item sets (FIS).
For example, if MS is 40% then {egg, bread}(40%),{egg,
bread, milk}(40%).
2. Use the frequent item set to generate the desired rules
If ABCD, AB is FISs, then AB -> CD : conf =
support(ABCD)/support(AB) and
if conf >= minimum confidence(MC), then the rule holds

For example, if MC is 75%, then {egg, bread}
{milk}(100%) holds.

Notation used in this paper is summarized below
k-item set---An item set having k items
Lk --- Set of frequent k-item sets(those with minimum
support). Each member of this set has two fields : i) item
set and ii) support count.
Ck --- Set of candidate k-item sets (potentially frequent
item sets). Each member of this set has two fields : i) item
set and ii) support count.

3. Algorithms for discovering large itemsets make multiple
passes over the data. In the first pass, we count the support
of individual items and determine which of them are large,
i.e. have minimum support. In each subsequent pass, we
start with a seed set of itemsets found to be large in the
previous pass. We use this seed set for generating new
potentially large itemsets, called candidate itemsets, and
count the actual support for these candidate itemsets during
the pass over the data. At the end of the pass, we determine
which of the candidate itemsets are actually large, and they
become the seed for the next pass. This process continues
until no new large itemsets are found.
3.1 AIS Algorithm
The AIS algorithm [3] was the first published algorithm
developed to generate all large itemsets in a transaction
database. It focused on the enhancement of databases with
necessary functionality to process decision support
queries. This technique is limited to only one item in the
consequent. That is, association rules are in the form of
X Ik | c, where X is a set of items and Ik is a single item
in the domain I, and c is the confidence of the rule. The
AIS algorithm makes multiple passes over the entire
database. During each pass, it scans all transactions. In the
first pass, it counts support of individual items and
determines which of them are large or frequent in the
database. Large itemsets of each pass are extended to
generate candidate itemsets. After scanning a transaction,
the common itemsets between large itemsets of previous
pass and items of this transaction are determined. These
common itemsets are extended with other items in the
transaction to generate new candidate itemsets. The

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5151

estimation tool and pruning techniques determine
candidate sets by omitting unnecessary itemsets from the
candidate sets. Then, the support of each candidate set is
computed. Candidate sets having supports greater than or
equal to minimum support are chosen as large itemsets.
These large itemsets are extended to generate candidate
sets for the next pass. The process terminates when no
more large itemsets are found. The main disadvantage of
this algorithm is that it results in unnecessarily generating
and counting too many candidate itemsets that turn out to
be small.
3.2 SETM Algorithm
This algorithm [3] used SQL to calculate large itemsets. In
this each member of the set large itemsets, Lk, is in the form

<TID, itemset> where TID is the unique identifier of a
transaction. Candidate itemsets are generated on the fly as
the database is scanned, but counted at the end of the pass.
1. New candidate itemsets are generated the same way as in
AIS algorithm, but the TID of the generating transaction is
saved with the candidate itemset in a sequential structure.
2. At the end of the pass, the support count of candidate
itemsets is determined by aggregating this sequential
structure Several passes are made on the database. When no
more itemsets are found, the algorithm terminates.
The main disadvantage of this algorithm is due to the
number of candidate sets Ck. Since for each candidate
itemset there is a TID associated with it, it requires more
space to store a large number of TIDs but sorting is needed
on itemsets. Another disadvantage is that for each
candidate itemset, there are as many entries as its support
value.
 3.3Apriori Algorithm
The Apriori algorithm [5],[6] is a great achievement in the
history of mining association rules. It is by far the most
well-known association rule algorithm. It uses Apriori
Property that states that any subset of large itemset must
also be large. It differs from AIS & SETM in the manner
candidate itemsets are generated. The Apriori generates the
candidate itemsets by joining the large itemsets of the
previous pass and deleting those subsets that are small in
the previous pass without considering the transactions in
the database. By only considering large itemsets of the
previous pass, the number of candidate large itemsets is
significantly reduced. The large itemset of the previous
pass is joined with itself to generate all itemsets whose size
is higher by 1. Each generated itemset, that has a subset,
which is not large, is deleted. The remaining itemsets are
the candidate ones. The only drawback of this algorithm is
that counting support of candidate itemsets is a time
consuming process since it requires scanning the entire
database.
3.4 AprioriTid Algorithm
Similar to Apriori , AprioriTid [5],[6] alorithm uses the
Apriori candidate generating function to determine
candidate sets before beginning of a pass. The main
difference from Apriori is that the database is not used at
all for counting the support of candidate itemsets after the
first pass. Another set C’ is generated of which each
member has the TID of each transaction and the large

itemsets present in this transaction. This set is used to count
the support of each candidate itemset.
Steps involved:
 The entire database is scanned and C1’ is obtained in

terms of itemsets.

 Large itemsets with 1-item L1 are calculated by

counting entries of C1’.
 Apriori is the used to obtain C2.

 Entries of C2’ corresponding to a transaction is

obtained by considering members of C2 which are

present in T
 L2 is then obtained by counting support in C2’

 This process continues until the candidate itemsets are
found to be empty.

The advantage of using this encoding function is that in
later passes the number of entries in C’ may be smaller than
the number of transactions in the database. The
disadvantage is that during initial passes candidate itemsets
generated are very large equivalent to size of database.
3.5 AprioriHybrid Algorithm
This algorithm [6] is based on the idea that it is not
necessary to use the same algorithm in all the passes over
data. Apriori does better in the earlier passes. AprioriTid
does better than Apriori in the later passes. Hence, a hybrid
algorithm can be designed that uses Apriori in the initial
passes and switches to AprioriTid when it expects that the
set C’ will fit in memory. Therefore, an estimation of C’ at
the end of each pass is necessary. Also, there is cost
involvement of switching from Apriori to AprioriTid.
3.6 Partition Algorithm
This algorithm[7] is fundamentally different from the
previous algorithms in that it scans the database at most
two times to generate all significant association rules.
Contrast this with the previous algorithms, where the
database is not only scanned multiple times but the number
of scans cannot even be determined in advance.
Surprisingly, the savings in I/O is not achieved at the cost
of increased CPU overhead. The reason the database needs
to be scanned multiple number of times is because the
number of possible itemsets to be tested for support is
exponentially large if it must be done in a single scan of
database. However, suppose we are given a small set of
potentially large itemsets, say a few thousand itemsets.
Then the support for them can be tested in one scan of
database and the actual large itemsets can be discovered.
This approach will work only if the given set contains all
actual large itemsets. Partition algorithm accomplices this
in two scans of the database. In one scan it generates a set
of all potentially large itemsets by scanning the database
once. The set is a superset of all large itemsets, i.e. it may
contain false positives. But no false negatives are reported.
During the second scan counters for each of these itemsets
are set up and their actual support are measured in one scan
of the database.
3.7 SEAR Algorithm
This algorithm is abbreviated as Sequential Efficient
Association Rule mining. This algorithm [8] [10] was
developed to see the effect of different data representation.
It is basically called modified Apriori. Like Apriori, each

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5152

pass of SEAR consists of a candidate generation phase
followed by a counting phase. However, it uses the prefix
data structure for itemsets, which has been developed to
improve the data structure used by Apriori. Apriori stores
candidates in tree-like data structure. Candidate sets are
stored in leaf nodes, each of which accommodates several
candidates. The purpose of internal nodes is to direct the
search for a candidate to the proper leaf. In contrast, SEAR
employs a prefix-tree data structure, in which nodes do not
contain sets, but only information about sets. Prefix trees
store both frequent sets and candidate sets in the same tree.
Infrequent sets are either not created in the first place or are
deleted immediately. It also makes use of pass bundling. In
this, several levels of the tree are expanded before counting
databases. It is implemented by setting a lower limit to the
number of candidates that have to be created before a
counting step is allowed.
3.8 SPEAR Algorithm
This algorithm [8] [10] is partitioned version of SEAR and
non-TID list version of Partition [7]. It uses the horizontal
data format, but makes two scans over database. First it
gathers potentially frequent itemsets, and then it obtains
their global support. Each partition is loaded into memory
and processed completely using SEAR. The advantage of
using item-lists is that the data size doesn’t grow during
course of algorithm so no buffer management is required.
The counting phase of SPEAR is a single pass of SEAR
during which all the active sets in the tree are considered as
candidates.
3.9 SPINC Algorithm
SPINC [8] is a version of SPEAR that uses an incremental
partitioning technique. This incremental method does not
process partitions independently like SPEAR, but uses the
partial results from preceding partitions. The basic principle
is to count a set in every partition following the one in
which it was found frequent. It produces immediate savings
in that a set will not be counted twice in the partitions in
which it was frequent. This directly reduces the amount of
computation. Furthermore, the last partition does not have
to be counted al all in phase II, which saves the IO
operations and allows the algorithm to use less that two
passes over the data.
3.10 DHP Algorithm
DHP [9] [10] stands for Direct Hashing and Pruning. It has
two main features: one is efficient generation for large
itemsets and the other is effective reduction on transaction
database size. It utilizes a hash technique for efficient
generation of candidate large itemsets, in particular for
large 2-itemsets. In addition, it employs effective pruning
techniques to progressively reduce the transaction database
size. DHP uses the technique of hashing to filter out
unnecessary itemsets for next candidate itemset generation.
DHP reduces database size progressively by not only
trimming each individual transaction size but also pruning
number of transactions in the database. DHP achieves a
shorter execution time than Apriori even in later iterations.
Parallel Algorithms provide scalability to massive data sets
and improving response time. Its execution time depends
not only on input size but also on the architecture of the
parallel Computer and the no. of processors. All the

algorithms proposed for parallel in shared nothing
architecture can also be implemented for distributed
architecture. Distributed architecture is same as parallel
shared nothing architecture with a slow communication
network. Therefore, the emphasis in distributed systems is
on reducing the communication overhead.
3.11 Count Distribution (CD)
It is a simple parallelization of Apriori algorithm. All
processors generate the entire candidate set from Lk-1. Each
processor can thus independently get partial supports of the
candidates from its local database partition and sum up to
get global counts by exchanging local counts with other
processors [21],[22]. Once global frequent sets have been
determined, next candidate item sets can be determined in
parallel at all processors. The focus is on minimizing
communication. It does so even at the expense of carrying
redundant computations in parallel. Aggregate memory of
the system is not exploited effectively.
3.12 Data Distribution (DD)
It is designed to exploit better the total system’s memory as
the number of processor is increased. It uses the total
system memory by generating disjoint candidate sets on
each processor [21],[22]. However, to generate the global
support, each processor must scan the entire database (its
local partition and all remote partitions) in all iterations.It is
designed to exploit better the total system’s memory as the
number of processor is increased but Contention is a major
problem and Processors may remain idle at the time of
communication.
3.13 Candidate Distribution
This algorithm partitions the candidates during iteration l,
so that each processor can generate disjoint candidates
independent of other processors [21],[22]. The partitioning
uses heuristics based on support, so that each processor gets
an equal amount of work. The choice of the redistribution
pass involves a tradeoff between decoupling processor
dependence as soon as possible and waiting until sufficient
load balance can be achieved.
No local data send, only global values exchanged and data
is received asynchronously and the processors do not wait
for the complete pruning information to arrive from all the
processors but repartitioning is expensive.
3.14 Fast Distributed
It is built on count distribution and proposes new
techniques to reduce the number of candidates considered
for counting. In this way, it minimizes communication.
Each site generates candidates using the Global frequents
from all the sites and assigns a home site for each
candidate. Then, each site computes the local support for
all candidates. Next comes the local pruning step, Any
item-set X that is not locally frequent at the current site, is
removed. This is because if X is globally frequent then it
must be frequent at some other site.The next step is count-
polling optimization. Each home site requests, for all
candidates assigned to it, local count from all other sites
and computes their global support. The home site then
broadcasts the global support to all other sites.The
algorithm is specifically designed for distributed
environment and unlike Count Distribution where local
counts of all the candidates are broadcast to everyone else,

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5153

it sends to only one home site per candidate but algorithms
require multiple database scans. Number of scans is equal
to the size largest frequent itemset. All the processors have
to communicate the results of every database scan and wait
for the results from other nodes to proceed for the next
level. Hence, the number of synchronizations is equal to the
size largest frequent item set.

4. CLASSIFICATION ALGORITHMS
4.1 FP-Growth Algorithm
FP stands for Frequent Patterns. This algorithm [11] makes
use of an FP-tree structure, which is an extended prefix-tree
structure for storing compressed, crucial information
about frequent patterns. FP-Growth is an efficient method
for mining complete set of frequent patterns by pattern
fragment growth. Efficiency of mining is achieved with
three techniques. First, a large database is compressed into
a highly condensed, much smaller data structure, which
avoids costly repeated database scans. Second, FP tree-
based mining adopts a pattern fragment growth method to
avoid the costly generation of a large number of candidate
sets. And third, a partitioning based, divide and conquer
method is used to decompose mining task into a set of
smaller tasks for mining confined patterns in conditional
databases, which dramatically reduces the search space.
FP-Growth is efficient for mining both long and short
frequent patterns.
It avoids costly candidate generation and it has better
performance and efficiency than Apriori like algorithms but
it takes two complete scans of database and it uses a
recursive routine to mine patterns from a conditional
pattern base.

4.2 P-Tree Algorithm
A Pattern Tree [17], unlike FP Tree, which contains the
frequent items only, contains all the items that appear in the
original database. We can obtain a P-tree through one scan
of database and get the corresponding FP-tree from the P-
tree later. An FP tree is a sub-tree of the P-tree with a
specified support threshold, which contains those frequent

items that meet this threshold and hereby excludes
infrequent items. We do this by checking the frequency of
each node along the path from root to leaves. It uses the
same mining process as used by FP-Growth algorithm [11].
It scans the original database only once and in case support
threshold changes, we need not re-scan the database but it
uses a recursive mining process.

4.3 Inverted Matrix Algorithm
This association rule-mining algorithm is based on the
conditional pattern concept [11]. The algorithm [19][20] is
divided into two main phases. The first one, considered
pre-processing, requires two full I/O scans of the dataset
and generates a data structure called Inverted Matrix. In the
second phase, the Inverted Matrix is mined using different
support levels to generate association rules. The mining
process might take in some cases less than one-full I/O scan
of the data structure in which only frequent items based on
the support given by the user are scanned and participate in
generating the frequent patterns. The Inverted Matrix
layout combines the horizontal and vertical layouts with the
purpose of making use of the best of the two approaches
and reducing their drawbacks as much as possible. The idea
of this approach is to associate each item with all
transactions in which it occurs (i.e. an inverted index), and
to associate each transaction with all its items using
pointers.For computing frequencies, it relies first on
reading sub-transactions for frequent items directly from
the Inverted Matrix [19]. Then it builds independent
relatively small trees for each frequent item in the
transactional database. Each such tree is mined separately
as soon as they are built, with minimizing the candidacy
generation and without building conditional sub-trees
recursively.
It uses a simple and non-recursive association rule mining
process and the inverted matrix can be made disk resident,
so it performs well for large datasets but it makes two scans
of original database and the complexity of developing
inverted matrix is a bit high.

5. COMPARISON OF ALGORITHMS

Algorithm Scan Data structure Comments

Apriori m+1 Lk-1 : Hash table
Transaction database with Ck: Hash tree moderate cardinality;
Base algorithm for parallel algorithms

Apriori-TID m+1 Lk-1 : Hash table
Very slow with larger number Ck: array indexed by TID of
Ck

Partition of Data 2

Hash Table Suitable for large DB with high cardinality of data;
Favors homogenous data distribution.

CD m+1 Hash table and tree Data Parallelism.

DD m+1 Hash table and tree Task Parallelism; round- robin partition

IDD m+1 Hash table and tree Task Parallelism; partition by the first items

HD m+1 Hash table and tree Hybrid data and task parallelism; grid parallel architecture

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5154

6. LIMITATIONS & FUTURE SCOPE
Database needs to be scanned number of times, because the
number of possible itemsets to be tested for support is
exponentially large, if it must be done on a single scan of
database. There are several advances made in high
performance algorithms but still there are several areas
where immediate attention is required mentioned below
[7][10][15][16][18][23]
I. Larger databases: Databases with hundreds of fields

and tables, millions of records, and multi- gigabyte
size are quite commonplace, and terabyte databases
are beginning to appear.

II. High dimensionality: Not only is there often a very large
number of records in the database, but there can also be
a very large number of fields (attributes, variables) so
that the dimensionality of the problem is high. A high
dimensional data set creates problems in terms of
increasing the size of the search space for model
induction in a combinatorial explosive manner. In
addition, it increases the chances that a data mining
algorithm will find spurious patterns that are not valid in
general.

III. Over fitting: When the algorithm searches for the
best parameters for one particular model using a limited
set of data, it may model not only the general patterns in
the data but also any noise specific to that data set,
resulting in poor performance of the model on test data.

IV. Assessing statistical significance: A problem (related
to over fitting) occurs when the system is searching over
many possible models. For example, if a system tests N
models at the 0.001 significance level, then on average,
with purely random data, N=1000 of these models will
be accepted as significant. This point is frequently
missed by many initial attempts at KDD.

V. Changing data and knowledge: Rapidly changing data
may make previously discovered patterns invalid. In
addition, the variables measured in a given application
database may be modified, deleted, or augmented with
new measurements over time.

VI. Complex relationships between fields: Hierarchically
structured attributes or values, relations between
attributes, and more sophisticated means for
representing knowledge about the contents of a
database will require algorithms that can effectively
utilize such information.

VII. Understandability of patterns: In many applications it is
important to make the discoveries more understandable
by humans.

VIII. Rule refinement strategies can be used to address a
related problem: the discovered knowledge may be
implicitly or explicitly redundant.

IX. User interaction and prior knowledge: Many current
KDD methods and tools are not truly inter-active and
cannot easily incorporate prior knowledge about a
problem except in simple ways. The use of domain
knowledge is important in all of the steps of the KDD
process.

X. Integration with other systems: A stand-alone discovery
system may not be very useful. Typical integration
issues include integration with a DBMS (e.g. via a query

interface), integration with spreadsheets and
visualization tools, and accommodating real time sensor
readings.
Possible future scopes to overcome above illustrated

limitations are expounded below:
I. Large scale data sets are usually logically and

physically distributed. Organizations need a
decentralized approach if they are geographically
distributed. Modern organizations are emphasizing
on distributed nature of the data rather the size of the
data to be mined. Presently most current work
concerns only horizontal partition (were different
sites have different transaction), one has to work on
vertically partitioned (where different sites have
different item).

II. Most of the current algorithms are iterative and scan
data many times, hence they are not scalable.
Similarly in large databases, the candidates will
certainly not fit in aggregate system memory. This
means that candidates must be written out of disk
and divided into partitions small enough to be
processed in memory results further data scan.
Hence, limits scalability of the most current
algorithms.

III. Current algorithms require multiple passes over the
databases. For disk resident databases, this requires
reading the database completely for each pass.
Current algorithms can handle only a few thousand
items. Second iteration counts the frequency of all 2-
itemsets and essentially has quadratic complexity
because one must consider all item pairs and no
pruning is possible at this stage.

IV. Present algorithms used only a static load balancing
based on the initial data decomposition, and they
assumed a homogeneous dedicated environment. A
typical database parallel server has multiple users
and transient loads. Dynamic load balancing is also
crucial in a hetrogenious environment. Such an
environment might include metaclusters and
superclusters, with machines ranging from ordinary
workstations to super computer.

V. The main focus of the current algorithm has been
frequent itemset discovery. There is no attention on
rule generation because the assumption was that
there were only a few different itemsets, which led
researchers to believe that rule generation was
cheap. One can extract literally millions of frequent
itemsets. The complexity of the rule generation step
is 0(r.2l), where r is the number of frequent itemsets
and l is the longest frequent pattern.

VI. Most of the methods partition the data base
horizontally in equal size – blocks. The number of
frequent itemsets generated from each block can be
heavily skewed. That is, although one block might
contribute many frequent itemsets, the other might
have very few, implying that the processor
responsible latter block will be ideal most of the
time. The Effect of data skew can be eliminated to
large extent by randomizing the data allocated to
each partition.

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5155

7. CONCLUSIONS
This paper summarized survey of clustering algorithms,
association rules algorithms from a large amount of data,
sequential/parallel algorithms and classification algorithms
based on it are describe with their merits and demerits.
These algorithms are not suitable in many applications.
Some of the limitations are given and also suggested the
research area for data mining system.

REFERENCES
[1] R. Agrawal, T. Imienski and A. Swamy, Database Mining : A

Performance Perspective, IEEE Tran. On Knowledge and Data
Engg., December,1991.

[2] M-S Chen, J Han and P. S. Yu, Data Mining : An Overview from a
Database Perspective, IEEE Tran. On Knowledge and Data Engg.,
December,1996.

[3] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In Proc. of the ACM
SIGMOD Conference on Management of Data, Washington, D.C.,
May 1993

[4] Agarwal and R.Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. 20th International Conference. Very Large Databases,
Santiago, Chile, Sept 1994.

[5] A.Y. Zomya, T.E. Ghazawi and O. Frieder, Parallel and Distributed
Computing for Data Mining, IEEE Concurrency, Oct./Nov. 1999.

[6] R. Agrawal and Ramakrishnan Srikant. Fast Algorithms for mining
association rules in large databases. In Proceedings of the 20th
International Conference on Very Large Databases, Santiago, Chile,
August 29- September 1 1994.

[7] Ashok Savasere, Edward Omiecinski and Shamkant Navathe. An
efficient algorithm for mining association rules in large databases. In
Proceedings of the 21st VLDB Conference, Zurich, Switzerland,
1995.

[8] Mueller A. Fast sequential and parallel algorithms for association
rule mining: A comparison. Technical Report CS-TR-3515,
Department of Computing Science, University of Maryland, College
Park, MD, 1995.

[9] Jong Soo Park, Ming-Syan Chenand Philip S. Yu. An effective hash-
based algorithm for mining association rules. In Proceedings of 1995

ACM-SiGMOID international Conference on Management of Data,
1995.

[10] Mohammed J. Zaki, Rensselaer polytechnic Institute. Association
Mining: A Survey. IEEE Concurrency, 1999.

[11] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns
without candidate generation. Technical Report CMPT99-12, School
of Computing Science, Simon Fraser University, 1999.

[12] Mining Frequent Itemsets by Transaction Decomposition with
Itemset Clustering I-En Liao, Ke-Chung Lin, Hong-Bin Chen Int’l
Conf. Data Mining | DMIN’09 |

[13] A NEW TERM WEIGHTING SCHEME FOR DOCUMENT
CLUSTERING A. Keerthiram Murugesan1 and B. Jun Zhang1 Int’l
Conf. Data Mining | DMIN’11 |

[14] MRC: Multi Relational Clustering approach Majid Rastegar-
Mojarad, Behrouz Minaei-Bidgoli Int’l Conf. Data Mining |
DMIN’09 |

[15] Agarwal and R.Srikant, “Fast Algorithms for Mining Association
Rules,” Proc. 20th International Conference. Very Large Databases,
Santiago, Chile, Sept 1994.

[16] D. W. Cheung, V.T. Ng, A.W. Fu and Y Fu, Efficient Mining of
Association Rules in Distributed Databases, IEEE Tran. On
Knowledge and Data Engg. December,96.

[17] A.Y. Zomya, T.E. Ghazawi and O. Frieder, Parallel and Distributed
Computing for Data Mining, IEEE Concurrency, Oct./Nov. 1999.

[18] Skillicorn, Strategies for Parallel Data Mining.IEEE Concurrency,
Nov. 1999.

[19] A. Mueller,” Fast and Sequential Algorithms for Association Rule
Mining.” A comparison, Tech Report CS-TR-3515, Univ. of
Maryland, College Park. Md. 1995.

[20] J.S. Park, M.Chen and P.S. Yu, “Effective Hash-Based Algorithm
for Mining Association Rules”, ACM International Conf.
Information and Knowledge Management, ACM Press, May 1995.

[21] Margaret H. Dunham and Yongqiao Xiao, Southern Methodist
University, Dallas, Texas and Le Gruenwald, Zahid Hossain,
University of Oklahoma, Norman UK, “ A survey of Association
Rules”

[22] Mohammed J. Zaki, Rensselaer Polytechnic Institute, “Parallel and
Distributed Association Mining: A Survey”, IEEE Concurrency 1999

[23] Data Mining in the Real World: Experiences,
Challenges, and Recommendations Gary Weiss Int’l
Conf. Data Mining | DMIN’09 |

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5156

