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Abstract -Data mining is a powerful and new method of 
analyzing data and finding out new patterns from large set of 
data. The objective of data mining is to pull out knowledge 
from a data set in an understandable format. Data mining is 
the process of collecting, extracting and analyzing large data 
set from different perspectives.  
There is an enormous amount of data stored in databases and 
data warehouse due to enormous technological advancements 
in computing and Internet. It is therefore, required, to develop 
powerful tools for analysis of such huge data and mining 
valuable information out of it. One of the main challenges in 
database mining is developing fast and efficient algorithms 
that can handle large volumes of data as most of the mining 
algorithms perform computation over the entire databases, 
often very large. Data  mining  is  a  convenient  way  of  
extracting  patterns,  which  represents  knowledge implicitly 
stored in large data sets and focuses on issues relating to their 
feasibility, usefulness, effectiveness and scalability. It can be 
viewed as an essential step in the process of knowledge 
discovery. Data are normally preprocessed through data 
cleaning, data integration, data selection, and data 
transformation and prepared for the mining task. Data 
mining can be performed on various types of databases and 
information repositories, but the kind of patterns to be found 
are specified by various data mining functionalities like class 
description, association, correlation analysis, classification, 
prediction, cluster analysis etc. This paper gives an overview 
of the existing data mining algorithms required for the same. 
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1. INTRODUCTION 
The literature available for data mining contains many 
definitions [1][2][5][9]. Some of them depend on the 
application and how data has been organized into a 
database whereas some of them depend on the discovery of 
new information from the facts in a database. Data mining 
is a process by which one can extract interesting and 
valuable information from large data using efficient 
techniques. Data Clustering, Data Classification, Detection 
of Outliers and Association Rule Mining are useful basic 
data mining techniques depending upon the type of 
information sought from databases. Basic data mining 
techniques are data clustering, data classification, detection 
of outliers (or deviations) and association rule discovery 
[1][3]. 
1.1 Data Clustering: It is the process of grouping or 

partitioning a set of data into different groups or 
clusters based on the principle that the similarity 
between the data points in one cluster is maximized 
and the similarity between data points in different 
clusters is minimized. For example, grouping of 

companies with similar stock behavior or similar 
growth to identify genes and proteins  have similar 
functions. 

1.2 Data Classification: It is the process to classify a set of 
data based on their values. For example, A car dealer 
has to classify its customers according to their 
preference for cars so that catalogs of new models can 
be mailed directly to the customers to maximize 
business opportunity. 

1.3 Detection of outliers (or Deviations): Finds data points 
that differ significantly from the majority of the data 
points in a given data set as needed in Medical 
diagnosis and credit card detection.  

1.4 Association Rule Discovery: It finds all rules that 
correlate the presence of one set of items with that of 
another set of items. For example, one may find, from 
a large set of transaction data, such an association rule 
as if a customer buys (one brand of ) milk, he/ she 
usually buys ( another brand of ) bread in the same 
transaction. 

The objective of this paper is to provide various data 
mining algorithms with reference to clustering, 
classification and association rules. In following section a 
survey of clustering algorithms is illustrated. Section 3, 
consist various association algorithms. In section 4, 
existing classification algorithms have been discussed. In 
section 5 various algorithms we expound have been 
collated, while in section 6 we discussed development of 
new algorithms to overcome the various existing issues.   
  

2. CLUSTERING ALGORITHMS 
Clustering algorithms can be categorized based on their 
cluster model. As there are probably a few dozen published 
clustering algorithms. Not all provide models for their 
clusters and can thus not easily be categorized [12][13][14].  
2.1 Connectivity based clustering (Hierarchical 
clustering) 
Connectivity based clustering, also known as hierarchical 
clustering, is based on the core idea of objects being more 
related to nearby objects than to objects farther away. As 
such, these algorithms connect "objects" to form "clusters" 
based on their distance. A cluster can be described largely 
by the maximum distance needed to connect parts of the 
cluster. At different distances, different clusters will form, 
which can be represented using a dendrogram, which 
explains where the common name "hierarchical clustering" 
comes from. These algorithms do not provide a single 
partitioning of the data set, but instead provide an extensive 
hierarchy of clusters that merge with each other at certain 
distances. In a dendrogram, the y-axis marks the distance at 
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which the clusters merge, while the objects are placed 
along the x-axis such that the clusters don't mix. 
Apart from the usual choice of distance functions, the user 
also needs to decide on the linkage criterion (since a cluster 
consists of multiple object, there are multiple candidates to 
compute the distance to) to use. Popular choices are known 
as single-linkage clustering (the minimum of object 
distances), complete linkage clustering (the maximum of 
object distances) or UPGMA ("Unweighted Pair Group 
Method with Arithmetic Mean", also known as average 
linkage clustering). Furthermore, hierarchical clustering 
can be computed agglomerative (starting with single 
elements and aggregating them into clusters) or divisive 
(starting with the complete data set and dividing it into 
partitions). 
While these methods are fairly easy to understand, the 
results are not always easy to use, as they will not produce 
a unique partitioning of the data set, but a hierarchy the 
user still needs to choose appropriate clusters from. The 
methods are not very robust towards outliers, which will 
either show up as additional clusters or even cause other 
clusters to merge (known as "chaining phenomenon", in 
particular with single-linkage clustering). In the data 
mining community these methods are recognized as a 
theoretical foundation of cluster analysis, but often 
considered obsolete. They did however provide inspiration 
for many later methods such as density based clustering. 
2.2 Centroid-based Clustering 
In centroid-based clustering, clusters are represented by a 
central vector, which must not necessarily be a member of 
the data set. When the number of clusters is fixed to k, k-
means clustering gives a formal definition as an 
optimization problem: find the k cluster centers and assign 
the objects to the nearest cluster center, such that the 
squared distances from the cluster are minimized. 
The optimization problem itself is known to be NP-hard, 
and thus the common approach is to search only for 
approximate solutions. A particularly well known 
approximate method is often actually referred to as "k-
means algorithms". It does however only find a local 
optimum, and is commonly run multiple times with 
different random initializations. Variations of k-means 
often include such optimizations as choosing the best of 
multiple runs, but also restricting the centroids to members 
of the data set (k-medoids), choosing medians (k-medians 
clustering), choosing the initial centers less randomly (K-
means++) or allowing a fuzzy cluster assignment (Fuzzy c-
means).  Most k-means-type algorithms require the number 
of clusters - k - to be specified in advance, which is 
considered to be one of the biggest drawbacks of these 
algorithms. Furthermore, the algorithms prefer clusters of 
approximately similar size, as they will always assign an 
object to the nearest centroid. K-means has a number of 
interesting theoretical properties. On one hand, it partitions 
the data space into a structure known as Voronoi diagram. 
On the other hand, it is conceptually close to nearest 
neighbor classification and as such popular in machine 
learning. Third, it can be seen as a variation of model based 
classification, and Lloyd's algorithm as a variation of the 
Expectation-maximization algorithm. 

2.3 K-Means Clustering Algorithm 
This nonhierarchical method initially takes the number of 
components of the population equal to the final required 
number of clusters. In this step itself the final required 
number of clusters is chosen such that the points are 
mutually farthest apart. Next, it examines each component 
in the population and assigns it to one of the clusters 
depending on the minimum distance. The centroid's 
position is recalculated every time a component is added to 
the cluster and this continues until all the components are 
grouped into the final required number of clusters.  

The k-means algorithm works as follows:  
a)  Randomly select k data object from dataset D as initial 

cluster centers.  
b)  Repeat  

      i.  Calculate the distance between each data object 
di(1≤i≤n) and all k cluster centers  

             cj(1≤j≤n) and assign data object di to the nearest 
cluster.  

     ii.  For each cluster j(1≤j≤k), recalculate the cluster 
center. 

     iii. Until no changing in the center of clusters. The most 
widely used convergence criteria for the k-means 
algorithm is minimizing the SSE. 

2.4 Distribution-based Clustering 
The clustering model most closely related to statistics is 
based on distribution models. Clusters can then easily be 
defined as objects belonging most likely to the same 
distribution. A nice property of this approach is that this 
closely resembles the way artificial data sets are generated: 
by sampling random objects from a distribution. While the 
theoretical foundation of these methods is excellent, they 
suffer from one key problem known as overfitting, unless 
constraints are put on the model complexity. A more 
complex model will usually always be able to explain the 
data better, which makes choosing the appropriate model 
complexity inherently difficult. The most prominent 
method is known as expectation-maximization algorithm. 
Here, the data set is usually modeled with a fixed (to avoid 
overfitting) number of Gaussian distributions that are 
initialized randomly and whose parameters are iteratively 
optimized to fit better to the data set. This will converge to 
a local optimum, so multiple runs may produce different 
results.  
Distribution-based clustering is a semantically strong 
method, as it not only provides you with clusters, but also 
produces complex models for the clusters that can also 
capture correlation and dependence of attributes. However, 
using these algorithms puts an extra burden on the user: to 
choose appropriate data models to optimize, and for many 
real data sets, there may be no mathematical model 
available the algorithm is able to optimize (e.g. assuming 
Gaussian distributions is a rather strong assumption on the 
data). 
2.5 Density-based Clustering 
In density-based clustering, clusters are defined as areas of 
higher density than the remainder of the data set. Objects in 
these sparse areas - that are required to separate clusters - 
are usually considered to be noise and border points.The 
most popular density based clustering method is DBSCAN. 
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In contrast to many newer methods, it features a well-
defined cluster model called "density-reach ability". Similar 
to linkage based clustering; it is based on connecting points 
within certain distance thresholds. However, it only 
connects points that satisfy a density criterion, in the 
original variant defined as a minimum number of other 
objects within this radius. A cluster consists of all density-
connected objects (which can form a cluster of an arbitrary 
shape, in contrast to many other methods) plus all objects 
that are within these objects range. Another interesting 
property of DBSCAN is that its complexity is fairly low - it 
requires a linear number of range queries on the database - 
and that it will discover essentially the same results (it is 
deterministic for core and noise points, but not for border 
points) in each run, therefore there is no need to run it 
multiple times.  
The key drawback of DBSCAN is that it expects some kind 
of density drop to detect cluster borders. 
2.6 Graph-based approaches 
To address the problem of clustering, k nearest neighbors 
(kNNs) are used to identify k most similar points around 
each point and by way of conditional merging, clusters are 
generated. There are various variants of kNN clustering and 
they differ at the conditional merging part of the solution. 
For a given point p, its kNNs are found out.  If the distance 
between p and any of the points in kNN(p) set (say q) is 
less than ϵ, then point q is merged into the cluster of p. This 
algorithm requires tuning of ϵ and k values to get clusters. In a 
method proposed, to construct strongly connected 
components from a given directed graph where each edge is 
associated with a weight (usually distance between points).  
This method is highly sensitive to the presence of noise and 
cannot handle clusters of different densities.  
 

3. ASSOCIATION RULE MINING ALGORITHMS 
 Given a set of transactions, where each literal (called 
items), association rules is an expression of the form X Y, 
where X and Y are set of items[1,3,6,8].  
There are two important measures for association rules, 
support (s) and confidence (), can be defined as follows:  
Support is the ratio (in percent) of the records that contain 
X  Y to the total number of records in the database.  
Confidence is the ratio (in percent) of the number of 
records that contain X  Y to the number of records  that 
contain X. 
For example, let us consider customer's purchase data 
shown in Table 1. 
 
Table 1: Consumer purchased Data 
Trans ID (TID) Item 
1 egg, bread, milk 
2 egg, milk 
3 egg 
4 egg, bread, milk 
5 cheese 
For example, if you were a owner of the supermarket, you 
would like to think of the layout of the store. In that case, 
the rules in Table 2 can be useful.  
 
 

Table 2: Association Rules 
Rule Support   Confidence 
egg, bread  => milk 40%  100% 
egg => bread 40% 50% 
 
The problem of mining association rules can be 
decomposed into two sub problems:  
1. Find all sets of items(itemset (IS)) whose support is 
greater than the user-specified minimum support(MS):large 
item set or frequent Item sets (FIS). 
For example, if MS is 40% then {egg, bread}(40%),{egg, 
bread, milk}(40%).  
2. Use the frequent item set to generate the desired rules 
If ABCD, AB is FISs, then AB -> CD : conf = 
support(ABCD)/support(AB) and 
if conf >= minimum confidence(MC), then the rule holds 
 
For example, if MC is 75%, then {egg, bread} 
{milk}(100%) holds.  
 
Notation used in this paper is summarized below 
k-item set---An item set having k items 
Lk --- Set of frequent k-item sets(those with minimum 
support). Each member of this set has two fields : i) item 
set and ii) support count.  
Ck --- Set of candidate k-item sets (potentially frequent 
item sets). Each member of this set has two fields : i) item 
set and ii) support count. 
 
3. Algorithms for discovering large itemsets make multiple 
passes over the data. In the first pass, we count the support 
of individual items and determine which of them are large, 
i.e. have minimum support. In each subsequent pass, we 
start with a seed set of itemsets found to be large in the 
previous pass. We use this seed set for generating new 
potentially large itemsets, called candidate itemsets, and 
count the actual support for these candidate itemsets during 
the pass over the data. At the end of the pass, we determine 
which of the candidate itemsets are actually large, and they 
become the seed for the next pass. This process continues 
until no new large itemsets are found. 
3.1 AIS Algorithm  
The AIS algorithm [3] was the first published algorithm 
developed to generate all large itemsets in a transaction 
database. It focused on the enhancement of databases with 
necessary functionality to process decision support 
queries. This technique is limited to only one item in the 
consequent. That is, association rules are in the form of 
X Ik | c, where X is a set of items and Ik is a single item 
in the domain I, and c is the confidence of the rule. The 
AIS algorithm makes multiple passes over the entire 
database. During each pass, it scans all transactions. In the 
first pass, it counts support of individual items and 
determines which of them are large or frequent in the 
database. Large itemsets of each pass are extended to 
generate candidate itemsets. After scanning a transaction, 
the common itemsets between large itemsets of previous 
pass and  items of this transaction are determined. These 
common itemsets are extended with other items in the 
transaction to generate new candidate itemsets. The 
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estimation tool and pruning techniques determine 
candidate sets by omitting unnecessary itemsets from the 
candidate sets. Then, the support of each candidate set is 
computed. Candidate sets having supports greater than or 
equal to minimum support are chosen as large itemsets. 
These large itemsets are extended to generate candidate 
sets for the next pass. The process terminates when no 
more large itemsets are found. The main disadvantage of 
this algorithm is that it results in unnecessarily generating 
and counting too many candidate itemsets that turn out to 
be small.  
3.2 SETM Algorithm  
This algorithm [3] used SQL to calculate large itemsets. In 
this each member of the set large itemsets, Lk, is in the form 

<TID, itemset> where TID is the unique identifier of a 
transaction. Candidate itemsets are generated on the fly as 
the database is scanned, but counted at the end of the pass. 
1. New candidate itemsets are generated the same way as in 
AIS algorithm, but  the TID of the generating transaction is 
saved with the candidate itemset in a sequential structure. 
2. At the end of the pass, the support count of candidate 
itemsets is determined by aggregating this sequential 
structure Several passes are made on the database. When no 
more itemsets are found, the algorithm terminates.  
The main disadvantage of this algorithm is due to the 
number of candidate sets Ck. Since for each candidate 
itemset there is a TID associated with it, it requires more 
space to store a large number of TIDs but sorting is needed 
on itemsets. Another disadvantage is that for each 
candidate itemset, there are as many entries as its support 
value. 
 3.3Apriori Algorithm 
The Apriori algorithm [5],[6] is a great achievement in the 
history of mining association rules. It is by far the most 
well-known association rule algorithm. It uses Apriori 
Property that states that any subset of large itemset must 
also be large. It differs from AIS & SETM in the manner 
candidate itemsets are generated. The Apriori generates the 
candidate itemsets by joining the large itemsets of the 
previous pass and deleting those subsets that are small in 
the previous pass without considering the transactions in 
the database. By only considering large itemsets of the 
previous pass, the number of candidate large itemsets is 
significantly reduced. The large itemset of the previous 
pass is joined with itself to generate all itemsets whose size 
is higher by 1. Each generated itemset, that has a subset, 
which is not large, is deleted. The remaining itemsets are 
the candidate ones. The only drawback of this algorithm is 
that counting support of candidate itemsets is a time 
consuming process since it requires scanning the entire 
database. 
3.4 AprioriTid Algorithm 
Similar to Apriori , AprioriTid [5 ],[6] alorithm uses the 
Apriori candidate generating function to determine 
candidate sets before beginning of a pass. The main 
difference from Apriori is that the database is not used at 
all for counting the support of candidate itemsets after the 
first pass. Another set C’ is generated of which each 
member has the TID of each transaction and the large 

itemsets present in this transaction. This set is used to count 
the support of each candidate itemset. 
Steps involved: 
 The entire database is scanned and C1’ is obtained in 

terms of itemsets. 

 Large itemsets with 1-item L1 are calculated by 

counting entries of C1’. 
 Apriori is the used to obtain C2.  

 Entries of C2’ corresponding to a transaction is 

obtained by considering members of  C2 which are 

present in T 
 L2 is then obtained by counting support in C2’ 

 This process continues until the candidate itemsets are 
found to be empty. 

The advantage of using this encoding function is that in 
later passes the number of entries in C’ may be smaller than 
the number of transactions in the database. The 
disadvantage is that during initial passes candidate itemsets  
generated are very large equivalent to size of database.  
3.5 AprioriHybrid Algorithm 
This algorithm [6]  is based on the idea that it is not 
necessary to use the    same algorithm in all the passes over 
data. Apriori does better in the earlier passes. AprioriTid 
does better than Apriori in the later passes. Hence, a hybrid 
algorithm can be designed that uses Apriori in the initial 
passes and switches to AprioriTid when it expects that the 
set C’ will fit in memory. Therefore, an estimation of C’ at 
the end of each pass is necessary. Also, there is cost 
involvement of switching from Apriori to AprioriTid.  
3.6 Partition Algorithm 
This algorithm[7]  is fundamentally different from the 
previous algorithms in that it scans the database at most 
two times to generate all significant association rules. 
Contrast this with the previous algorithms, where the 
database is not only scanned multiple times but the number 
of scans cannot even be determined in advance. 
Surprisingly, the savings in I/O is not achieved at the cost 
of increased CPU overhead.  The reason the database needs 
to be scanned multiple number of times is because the 
number of possible itemsets to be tested for support is 
exponentially large if it must be done in a single scan of 
database. However, suppose we are  given a small set of 
potentially large itemsets, say a few thousand itemsets. 
Then the support for them can be tested in one scan of 
database and the actual large itemsets can be discovered. 
This approach will work only if the given set contains all 
actual large itemsets. Partition algorithm accomplices this 
in two scans of the database. In one scan it generates a set 
of all potentially large itemsets by scanning the database 
once. The set is a superset of all large itemsets, i.e. it may 
contain false positives. But no false negatives are reported. 
During the second scan counters for each of these itemsets 
are set up and their actual support are measured in one scan 
of the database.  
3.7 SEAR Algorithm 
This algorithm is abbreviated as Sequential Efficient 
Association Rule mining. This algorithm [8] [10] was 
developed to see the effect of different data representation. 
It is basically called modified Apriori. Like Apriori, each 
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pass of SEAR consists of a candidate generation phase 
followed by a counting phase. However, it uses the prefix 
data structure for itemsets, which has been developed to 
improve the data structure used by Apriori. Apriori stores 
candidates in tree-like data structure. Candidate sets are  
stored in leaf nodes, each of which accommodates several 
candidates. The purpose of internal nodes is to direct the 
search for a candidate to the proper leaf. In contrast, SEAR 
employs a prefix-tree data structure, in which nodes do not 
contain sets, but only information about sets. Prefix trees 
store both frequent sets and candidate sets in the same tree. 
Infrequent sets are either not created in the first place or are 
deleted immediately. It also makes use of pass bundling. In 
this, several levels of the tree are expanded before counting 
databases. It is implemented by setting a lower limit to the 
number of candidates that have to be created before a 
counting step is allowed. 
3.8 SPEAR Algorithm 
This algorithm [8] [10] is partitioned version of SEAR and 
non-TID list version of Partition [7]. It uses the horizontal 
data format, but makes two scans  over database. First it 
gathers potentially frequent itemsets, and then it obtains 
their global support.  Each partition is loaded into memory 
and processed completely using SEAR. The advantage of 
using item-lists is that the data size doesn’t grow during 
course of algorithm so no buffer management is required. 
The counting phase of SPEAR is a single pass of SEAR 
during which all the active sets in the tree are considered as 
candidates.  
3.9 SPINC Algorithm 
SPINC [8] is a version of SPEAR that uses an incremental 
partitioning technique. This incremental method does not 
process partitions independently like SPEAR, but uses the 
partial results from preceding partitions. The basic principle 
is to count a set in every partition following the one in 
which it was found frequent. It produces immediate savings 
in that a set will not be counted twice in the partitions in 
which it was frequent. This directly reduces the amount of 
computation. Furthermore, the last partition does not have 
to be counted al all in phase II, which saves the IO 
operations and allows the algorithm to use less that two 
passes over the data. 
3.10 DHP Algorithm 
DHP [9] [10] stands for Direct Hashing and Pruning. It has 
two main features: one is efficient generation for large 
itemsets and the other is effective reduction on transaction 
database size. It utilizes a hash technique for efficient 
generation of candidate large itemsets, in particular for 
large 2-itemsets. In  addition, it employs effective pruning 
techniques to progressively reduce the transaction database 
size. DHP uses the technique of hashing to filter out 
unnecessary itemsets for next candidate itemset generation. 
DHP reduces database size progressively by not only 
trimming each individual transaction size but also pruning 
number of transactions in the database. DHP achieves a 
shorter execution time than Apriori even in later iterations. 
Parallel Algorithms provide scalability to massive data sets 
and improving response time. Its execution time depends 
not only on input size but also on the architecture of the 
parallel Computer and the no. of processors. All the 

algorithms proposed for parallel in shared nothing 
architecture can also be implemented for distributed 
architecture. Distributed architecture is same as parallel 
shared nothing architecture with a slow communication 
network. Therefore, the emphasis in distributed systems is 
on reducing the communication overhead. 
3.11 Count Distribution (CD) 
It is a simple parallelization of Apriori algorithm. All 
processors generate the entire candidate set from Lk-1. Each 
processor can thus independently get partial supports of the 
candidates from its local database partition and sum up to 
get global counts by exchanging local counts with other 
processors [21],[22]. Once global frequent sets have been 
determined, next candidate item sets can be determined in 
parallel at all processors. The focus is on minimizing 
communication. It does so even at the expense of carrying 
redundant computations in parallel. Aggregate memory of 
the system is not exploited effectively. 
3.12 Data Distribution (DD) 
It is designed to exploit better the total system’s memory as 
the number of processor is increased. It uses the total 
system memory by generating disjoint candidate sets on 
each processor [21],[22]. However, to generate the global 
support, each processor must scan the entire database (its 
local partition and all remote partitions) in all iterations.It is 
designed to exploit better the total system’s memory as the 
number of processor is increased but Contention is a major 
problem and Processors may remain idle at the time of 
communication. 
3.13 Candidate Distribution 
This algorithm partitions the candidates during iteration l, 
so that each processor can generate disjoint candidates 
independent of other processors [21],[22]. The partitioning 
uses heuristics based on support, so that each processor gets 
an equal amount of work. The choice of the redistribution 
pass involves a tradeoff between decoupling processor 
dependence as soon as possible and waiting until sufficient 
load balance can be achieved. 
No local data send, only global values exchanged and data 
is received asynchronously and the processors do not wait 
for the complete pruning information to arrive from all the 
processors but repartitioning is expensive. 
3.14 Fast Distributed 
It is built on count distribution and proposes new 
techniques to reduce the number of candidates considered 
for counting. In this way, it minimizes communication. 
Each site generates candidates using the Global frequents 
from all the sites and assigns a home site for each 
candidate. Then, each site computes the local support for 
all candidates. Next comes the local pruning step, Any 
item-set X that is not locally frequent at the current site, is 
removed. This is because if X is globally frequent then it 
must be frequent at some other site.The next step is count-
polling optimization. Each home site requests, for all 
candidates assigned to it, local count from all other sites 
and computes their global support. The home site then 
broadcasts the global support to all other sites.The 
algorithm is specifically designed for distributed 
environment and unlike Count Distribution where local 
counts of all the candidates are broadcast to everyone else, 
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it sends to only one home site per candidate but algorithms 
require multiple database scans. Number of scans is equal 
to the size largest frequent itemset. All the processors have 
to communicate the results of every database scan and wait 
for the results from other nodes to proceed for the next 
level. Hence, the number of synchronizations is equal to the 
size largest frequent item set. 
 
4. CLASSIFICATION ALGORITHMS 
4.1 FP-Growth Algorithm  
FP stands for Frequent Patterns. This algorithm [11] makes 
use of an FP-tree structure, which is an extended prefix-tree 
structure for storing compressed,   crucial information 
about frequent patterns. FP-Growth is an efficient method 
for mining complete set of frequent patterns by pattern 
fragment growth. Efficiency of mining is achieved with 
three techniques. First, a large database is compressed into 
a highly condensed, much smaller data structure, which 
avoids costly repeated database scans. Second, FP tree-
based mining adopts a pattern fragment growth method to 
avoid the costly generation of a large number of candidate 
sets. And third, a partitioning based, divide and conquer 
method is used to decompose mining task into a set of 
smaller tasks for mining confined patterns in conditional 
databases, which dramatically reduces the search space. 
FP-Growth is efficient for mining both long and short 
frequent patterns.  
It avoids costly candidate generation and it has better 
performance and efficiency than Apriori like algorithms but 
it takes two complete scans of database and it uses a 
recursive routine to mine patterns from a conditional 
pattern base. 
 
4.2 P-Tree Algorithm 
A Pattern Tree [17], unlike FP Tree, which contains the 
frequent items only, contains all the items that appear in the 
original database. We can obtain a P-tree through one scan 
of database and get the corresponding FP-tree from the P-
tree later. An FP tree is a sub-tree of the P-tree with a 
specified support threshold, which contains those frequent 

items that meet this threshold and hereby excludes 
infrequent items. We do this by checking the frequency of 
each node along the path from root to leaves. It uses the 
same mining process as used by FP-Growth algorithm [11]. 
It scans the original database only once and in case support 
threshold changes, we need not re-scan the database but it 
uses a recursive mining process. 
 
4.3 Inverted Matrix Algorithm  
This association rule-mining algorithm is based on the 
conditional pattern concept [11]. The algorithm [19][20] is 
divided into two main phases. The first one, considered 
pre-processing, requires two full I/O scans of the dataset 
and generates a data structure called Inverted Matrix. In the 
second phase, the Inverted Matrix is mined using different 
support levels to generate association rules. The mining 
process might take in some cases less than one-full I/O scan 
of the data structure in which only frequent items based on 
the support given by the user are scanned and participate in 
generating the frequent patterns. The Inverted Matrix 
layout combines the horizontal and vertical layouts with the 
purpose of making use of the best of the two approaches 
and reducing their drawbacks as much as possible. The idea 
of this approach is to associate each item with all 
transactions in which it occurs (i.e. an inverted index), and 
to associate each transaction with all its items using 
pointers.For computing frequencies, it relies first on 
reading sub-transactions for frequent items directly from 
the Inverted Matrix [19]. Then it builds independent 
relatively small trees for each frequent item in the 
transactional database. Each such tree is mined separately 
as soon as they are built, with minimizing the candidacy 
generation and without building conditional sub-trees 
recursively.  
It uses a simple and non-recursive association rule mining 
process and the inverted matrix can be made disk resident, 
so it performs well for large datasets but it makes two scans 
of original database and the complexity of developing 
inverted matrix is a bit high. 
 

 
 

5. COMPARISON OF ALGORITHMS 

Algorithm       Scan           Data structure  Comments  

Apriori  m+1  Lk-1 : Hash table  
Transaction database with Ck: Hash tree moderate  cardinality; 
Base algorithm for parallel algorithms  

Apriori-TID  m+1  Lk-1 : Hash table 
Very slow with larger number Ck: array indexed by       TID   of 
Ck  

   

Partition  of Data 2 
 

Hash Table Suitable for large DB with high cardinality of data;  
Favors homogenous data distribution. 

CD  m+1  Hash table and tree  Data Parallelism.  

DD  m+1  Hash table and tree  Task Parallelism; round- robin partition  

IDD  m+1  Hash table and tree  Task Parallelism; partition by the first items  

HD  m+1 Hash table and tree Hybrid data and task parallelism; grid parallel architecture 

 
 
 

 
 
 

N. K. Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5149 - 5156

5154



 
 
 

6. LIMITATIONS & FUTURE SCOPE 
Database needs to be scanned number of times, because the 
number of possible itemsets to be tested for support is 
exponentially large, if it must be done on a single scan of 
database. There are several advances made in high  
performance algorithms but still there are several areas 
where immediate attention is required mentioned below 
[7][10][15][16][18][23]  
I. Larger  databases: Databases  with  hundreds  of fields  

and  tables, millions  of  records,   and  multi- gigabyte  
size  are  quite  commonplace,  and  terabyte databases 
are beginning to appear.  

II. High dimensionality: Not only is there often a very large 
number of records in the database, but there can also be 
a very large number of   fields (attributes, variables) so 
that the dimensionality of the problem is high. A high 
dimensional data set creates problems in terms of 
increasing the size of the search space for model 
induction in a combinatorial explosive manner.  In 
addition, it increases the chances that a data mining 
algorithm will find spurious patterns that are not valid in 
general.  

III. Over  fitting:    When the algorithm searches  for the 
best parameters for one particular model using a limited 
set of data, it may model not only the general patterns in 
the data but also any noise specific to that data set, 
resulting in poor performance of the model on test data.   

IV. Assessing statistical significance:   A problem (related 
to over fitting) occurs when the system is searching over 
many possible models.  For example, if a system tests N 
models at the 0.001 significance level, then on average, 
with purely random data, N=1000 of these models will 
be accepted  as significant.  This point is frequently 
missed by many initial attempts at KDD.  

V. Changing data and knowledge: Rapidly changing  data 
may make previously discovered patterns invalid. In 
addition, the variables measured in a given application 
database may be modified, deleted, or augmented with 
new measurements over time.  

VI. Complex  relationships  between  fields: Hierarchically  
structured  attributes  or  values,  relations between  
attributes,  and  more  sophisticated  means for  
representing  knowledge  about  the  contents  of  a 
database  will  require  algorithms that  can  effectively 
utilize such information.   

VII. Understandability of patterns: In many applications it is 
important to make the discoveries more understandable 
by humans.  

VIII. Rule refinement strategies can be used to address a 
related problem:  the discovered knowledge may be 
implicitly or explicitly redundant. 

IX. User interaction and prior knowledge: Many current 
KDD methods and tools are not truly inter-active and 
cannot easily incorporate prior knowledge about a 
problem except in simple ways.  The use of domain 
knowledge is important in all of the steps of the KDD 
process.   

X. Integration with other systems: A stand-alone discovery 
system may not be very useful.  Typical integration 
issues include integration with a DBMS (e.g. via a query 

interface), integration with spreadsheets and 
visualization tools, and accommodating real time sensor 
readings.  
Possible future scopes to overcome above illustrated 

limitations are expounded below: 
I. Large scale data sets are usually logically and 

physically distributed. Organizations need a 
decentralized approach if they are geographically 
distributed. Modern organizations are emphasizing 
on distributed nature of the data rather the size of the 
data to be mined. Presently most current work 
concerns only horizontal partition (were different 
sites have different transaction), one has to work on 
vertically partitioned (where different sites have 
different item).  

II. Most of the current algorithms are iterative and scan 
data many times, hence they are not scalable. 
Similarly in large databases, the candidates will 
certainly not fit in aggregate system memory. This 
means that candidates must be written out of disk 
and divided into partitions small enough to be 
processed in memory results further data scan. 
Hence, limits scalability of the most current 
algorithms. 

III. Current algorithms require multiple passes over the 
databases. For disk resident databases, this requires 
reading the database completely for each pass. 
Current algorithms can handle only a few thousand 
items. Second iteration counts the frequency of all 2-
itemsets and essentially has quadratic complexity 
because one must consider all item pairs and no 
pruning is possible at this stage. 

IV. Present algorithms used only a static load balancing 
based on the initial data decomposition, and they 
assumed a homogeneous dedicated environment. A 
typical database parallel server has multiple users 
and transient loads. Dynamic load balancing is also 
crucial in a hetrogenious environment. Such an 
environment might include metaclusters and 
superclusters, with machines ranging from ordinary 
workstations to super computer. 

V. The main focus of the current algorithm has been 
frequent itemset discovery. There is no attention on 
rule generation because the assumption was that 
there were only a few different itemsets, which led 
researchers to believe that rule generation was 
cheap. One can extract literally millions of frequent 
itemsets. The complexity of the rule generation step 
is 0(r.2l), where r is the number of frequent itemsets 
and l is the longest frequent pattern. 

VI. Most of the methods partition the data base 
horizontally in equal   size – blocks. The number of 
frequent itemsets generated from each block can be 
heavily skewed. That is, although one block might 
contribute many frequent itemsets, the other might 
have very few, implying that the processor 
responsible latter block will be ideal most of the 
time. The Effect of data skew can be eliminated to 
large extent by randomizing the data allocated to 
each partition. 
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7. CONCLUSIONS 
This paper summarized survey of clustering algorithms, 
association rules algorithms from a large amount of data, 
sequential/parallel algorithms and classification algorithms 
based on it are describe with their merits and demerits. 
These algorithms are not suitable in many applications. 
Some of the limitations are given and also suggested the 
research area for data mining system.   
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